

Code Scanning Patterns in Program Comprehension

Christoph Aschwanden1 and Martha Crosby2
Adaptive Multimodal Interaction Laboratory

Department of Information and Computer Sciences
University of Hawaii at Manoa

1caschwan@hawaii.edu 2crosby@hawaii.edu

Abstract

Various publications have identified Beacons to play a key
role in program comprehension. Beacons are code
fragments that help developers comprehend programs. It
has been shown that expert programmers pay more
attention to Beacons than novices. Beacons are described
as the link between source code and hypothesis verification.
Beacons are sets of key features that typically indicate the
presence of a particular data structure or operation in
source code. However, only little research has been done
trying to identify and explain them in greater detail. It has
been demonstrated that good variable and procedure
names help in program comprehension. Documentation is
beneficial as well. The so-called swap operation for
variables is a strong indicator for a sorting algorithm. We
conducted an eye tracking study using the EventStream
software framework as the instrument to investigate
programmers' behavior during a code reading exercise.
Preliminary results suggest Beacons to be present when the
longest fixation duration is thousand milliseconds or higher.
Comparing participants with correct understanding versus
participants with wrong understanding showed differences
in focus of attention. Based on the study conducted, we
suggest to consider "int k=(a+b)/2" as Beacons during
program comprehension as well as lines of code which
exhibit very long fixations above 1000 milliseconds.

1. Introduction
Programming is considered a challenging endeavor to
undertake. But what makes it so hard? The fact is people
spend a long time to actually learn how to program.
Programs cannot easily be written down. Rules and
constraints have to be considered for the code to function
properly. Wiedenbeck, Soloway, von Mayrhauser et al.
suggest that people use different approaches to unders tand a
program. Research by Brooks, Letovsky, Littman et al.
shows comprehension to be top-down, bottom-up,
knowledge based, as-needed, control flow based and
integrated. Most studies have been conducted with paper
and pencil tests. Eye movements have rarely been used to
identify eye scanning patterns during software
comprehension [19][21][22].

How does a programmer perceive code? What types of
scanning patterns are used during the comprehension
process? Do all programmers use the same techniques, i.e.
scanning patterns to understand a program? Do
programmers with varying experience levels show different
traits?

Eye movement studies by Crosby and Stelovsky [21]
have determined that people use a variety of scanning
patterns. Programmers' strategies range from single scan to
multiple scan, i.e. programmers scan through the code once
or several times to understand it. Some developers focus
more on numbers, while others focus more on text. Some
people use comparative strategies during the
comprehension process. Other studies suggest that
programmers use Beacons.

It has been shown that good variable and procedure
names help in program comprehension. Documentation is
beneficial as well. The so-called swap operation for
variables is a strong indicator for a sorting algorithm. It has
been shown that expert programmers pay more attention to
Beacons than novices. Various publications have identified
that Beacons play a key role in program comprehension.
Beacons are code fragments that help developers
comprehend programs. Experienced programmers rely on
Beacons to guide their comprehension process. Brooks
describes Beacons as the link between source code and
hypothesis verification [11]. Wiedenbeck claims that
Beacons are a set of key features that typically indicate the
presence of a particular data structure or operation in source
code [87]. However, very little research has been done to
try to identify and explain them in greater detail.

So, how can eye movement data be used to explain why
some scanning patters yield better results than others? Can
scanning patterns be classified in a meaningful way and
how do they relate to other studies that focus on models of
program comprehension such as top-down or bottom-up?

An empirical study was conducted to identify scanning
patterns in program comprehension. Twelve algorithms
were shown to participants who had to recognize and name
them correctly. An eye Tracking System and the
EventStream software framework [4][28] were used as the
instruments to evaluate people's eye movements during
comprehension. Scanning patterns were analyzed to support
or deny the notion of Beacons.

2. Related Work
Several models have been proposed to explain how
software developers understand programs. Software
comprehension has been described as top-down by Brooks
[11], bottom-up by Basili and Mills [6][73], knowledge
based by Letovsky and Soloway [53], as-needed by Littman
and Pinto [54][76], control-flow based by Green and
Pennington [35][58][59] and integrated by von Mayrhauser
[85]. While the integrated model of program
comprehension has been published most recently, there is

 2

no clear evidence on why people scan through code the way
they do.

Domain level knowledge is important when
programmers attempt to understand a program. Especially
in object oriented languages Ramalingam and Wiedenbeck
describe domain level knowledge as imperative [67].
Application domain knowledge has been shown beneficial
for program comprehension. People that are familiar with a
domain tend to understand programs better than people that
are not familiar with the domain. Research by Shaft, Vessey
and von Mayrhauser indicates the top-down approach is
used to scan through source code. While bottom-up is used
if people are unfamiliar with a particular application
domain [16][51][72][84].

Experience level can be defined as the number of years
programming [15]. However, other factors exist that
influence experience level including intellectual capability,
knowledge base, cognitive style, motivation level, personal
characteristics and behavioral characteristics [23].
Cognitive factors have been found to play an important role
in programming proficiency [9][27]. Research by Adelson
shows expert developers rely on abstract problem
descriptions to understand code. Experts use a semantical
approach in the comprehension process. Novices on the
other hand are driven by how a program works syntactically
rather than what a program is doing semantically [2].
Davies, Green, Soloway and Ehrlich argue that experienced
programmers use programming plans during program
comprehension [24][34][36][69][75]. Experts use more
advanced strategies such as the top-down model and
Beacons when trying to understand a program. But results
vary and are inconclusive [30][52]. Little is known on how
people become experts. Evidence suggests that some people
are more skilled than others, independent of the number of
years programming. However, little proof is given on the
reason why.

Other research focuses on mental representations used by
software developers during program comprehension. People
build a mental image when trying to understand code
[58][61]. Winner and Casey argue that non-verbal IQ is
important for mental imagery in a field [88]. Also spatial
rather than visual images are used when programmers build
an abstract mental model of a problem [55]. Some studies
address the rationale why programmers use a particular
strategy to understand a program. The Information-
Foraging theory by Pirolli and Card [63][64] has been
successfully applied to anthropology [74], biology [77] or
information retrieval in the World-Wide Web by explaining
peoples' behavior as an evolutionary concept. However no
success can be reported for other fields such as program
comprehension in computer science.

Research by Tenny and Woodfield has shown that
comments, documentation and meaningful variable or
procedure names are beneficial to program comprehension.
Good indentation correlates with code understanding as
well. A study by Miara, et al. found three levels of
indentation to be the optimal size [12][52][56][65][81][89].
Knuth uses Literate Programming [50] to improve the
readability of software. However, Literate Programming

has not been applied well in industry. It is argued the
tradeoff between readability and time to write a program in
literate style is too high to be beneficial for professional
companies. Therefore, Literate Programming is not very
well accepted outside of Academia.

Baecker, Bednarik, Hendrix and Storey focus more on
tools, than on program comprehension itself
[7][8][17][37][70][80]. Tools that enhance the readability
of programs have been shown to be beneficial. In particular
tools that try to improve the visualization of large data
structures on the one hand and single lines of code on the
other hand. Fisheye views are used to display large
programs allowing browsing from a fish eye perspective.
Fisheye views are used to replace scroll bars by magnifying
selected areas while the rest of the text or imagery is
displayed as tiny text or graphics. Fisheye views have been
found superior compared to flat views [31]. Control
structure diagrams [37] are used to enhance the readability
of loop or conditional structures.

Several studies have been published that describe the
various aspects of people trying to understand code.
However, there is only limited evidence of how
programmers perceive code. There is a lot of information
about how but not why people read and comprehend
programs the way they do.

2.1. Beacons and Chunks
Studies related to Beacons and eye tracking have been done
sparsely. Beacons are described in numerous publications.
Gellenbeck and Cook argue that it is not clear if Beacons
really exist [33] and if they do, how they manifest
themselves. Beacons are defined as a guide that
programmers use during their code reading process. Brooks
describes Beacons as providing the link between the
process of verifying hypotheses and the actual source code
[11]. Wiedenbeck describes Beacons as sets of key features
that typically indicate the presence of a particular data
structure or operation in source code [87]. Beacons are
particularly useful during the top-down model of program
comprehension. Meaningful variable and procedure names
have been described as Beacons. The swap operation has
been shown to be a Beacon and to be beneficial in
comprehension as well [11][19][21][45][66][87].

 3

Chunks are described as code fragments in programs.
Available literature shows Chunks to be used during the
bottom-up approach of software comprehension. Chunks
vary in size. Several Chunks can be combined into larger
Chunks [5][14][26][37][47][57][59][66][73][75][83].

Beacons and Chunks share similarities. Both are defined
as code fragments. Figure 2.1 combines various theories
describing Beacons and Chunks into one diagram. "B"
represents a Beacon, while "C" represents a Chunk. How
Beacons and Chunks exactly help programmers understand
code has still to be defined.

Tracking the participant's eye movements can show their
focus of attention. Numerous studies not related to
computer science have been conducted. People were found
to use fixations and saccades while they look at texts or
imagery. Research by Zelinsky describes fixation on an
object depends on the time to inspect the object and the
time to comprehend it [90][91][92]. Does the same apply to
reading code?

How does one set apart Beacons and normal code?
Which lines of code qualify as Beacon; which lines of code
don't? The question can't be answered with a simple yes or
no. An answer based on a continuous scale is far more
feasible. A swap operation could be rated as 95% Beacon
likely, while a simple loop statement might for example get
a 33% Beacon score. How does one define such a scale?

Eye movement research is well established in text
reading and image recognition. However only a few studies
have investigated programmers while they were reading
code [19][21][22]. Programmers use various strategies to
comprehend software. People's scanning techniques change
from single to multiple scan eye movements. It has also
been found that some people focus more on numbers, while
others focus more on text. Scanning patterns range from
top-to-bottom to left-to-right strategies. Rereading is a
common practice as well. Bednarik found novices exhibit
higher mean fixation durations than more experienced
programmers [8]. There has no relationship been
established between expertise and reading strategy.

Putting it all together, there is a lack of studies analyzing
eye scanning patterns. Different models of comprehension
such as top-down or bottom-up have been identified and

could be verified by analyzing the participants' eye
movements. Eye movement research gives more insight
about what a programmer is looking at during the
comprehension process.

3. Code Reading Experiment
An empirical study was conducted to identify scanning
patterns and Beacons in code. Twelve algorithms were
shown to participants who had to identify them and answer
a number of questions. An ASL eye tracking system [3]
was used to record eye movements during the experiment.
The EventStream Framework was utilized as the instrument
for setting up the experiments, data recording and data
analysis.

3.1. Participants
The study was conducted during the last weeks of fall
semester 2004 at the Adaptive Multimodal Interaction
laboratory [1], University of Hawaii at Manoa. Participants
were recruited from a third year computer science class and
given extra credit for participation. Fifteen participants
performed the experiment which was one hour or less in
duration including the filling out the pre-questionnaire, the
post-questionnaire and the consent form.

3.2. Materials
The experiment was geared towards elaborating scanning
patterns and Beacons in code. The study consisted of three
parts:
• Pre-Questionnaire to evaluate programming expertise

and interest.
• Experiment to record eye movements during program

comprehension.
• Post-Questionnaire to evaluate tasks and satisfaction

with the experiment.
The pre-questionnaire asked questions about the experience
level; the number of years programming; academic standing
and programming languages known. Programming interest
and motivation for participation were evaluated as well.
The post-questionnaire asked about the difficulty level of
the tasks performed. Furthermore problems encountered
and satisfaction with the experimental setup was evaluated.

The experiment consisted of the recursive and non-
recursive versions of six algorithms. Java is the primary
language used to teach programming at the University of
Hawaii. Therefore, all algorithms were shown in Java.
These were the algorithms used:
• Sum algorithm - Sums up the items in an array.
• Exponent algorithm - Calculates a to the power of b.
• Factorial algorithm - Returns factorial of n.
• Binary search algorithm - Returns the index of an item

in an array.
• GCD algorithm - Returns the greatest common divisor

of two numbers.
• Fibonacci algorithm - Returns the nth element of the

Fibonacci sequence.

Figure 2.1 - Beacons and Chunks

 Knowledge

C
B

B

C

Source Code

…
B
…
…
B
…
 …
 …
 … C
 …
 …
…

 4

Given the algorithms, two sequences of the tasks were
created. The six algorithms were shown in both recursive
and non-recursive form, following the Java style guidelines
by Vermeulen et al. [82]. Recursive and non-recursive
algorithms were displayed alternately. For each version,
three algorithms were shown in the recursive form first,
while the other three algorithms were shown in the non-
recursive form first. Figure 3.1 depicts the two sequences
created.

Version 1
1. Factorial (recursive)
2. Sum (non-recursive)
3. Binary Search (recursive)
4. Exponent (non-recursive)
5. GCD (recursive)
6. Fibonacci (non-recursive)
7. Exponent (recursive)
8. GCD (non-recursive)
9. Fibonacci (recursive)
10. Factorial (non-recursive)
11. Sum (recursive)

 12. Binary Search (non-recursive)
Version 2
1. Factorial (non-recursive)
2. Sum (recursive)
3. Binary Search (non-recursive)
4. Exponent (recursive)
5. GCD (non-recursive)
6. Fibonacci (recursive)
7. Exponent (non-recursive)
8. GCD (recursive)
9. Fibonacci (non-recursive)
10. Factorial (recursive)
11. Sum (non-recursive)
12. Binary Search (recursive)

Figure 3.1 - Sequence of Tasks

The participants were divided into two groups, one group
given task sequence version one, the other group given
version two.

3.3. Procedure
The experimental session began by explaining the
laboratory setup with the eye t racking system. The
participants then filled out the consent form and the pre -
questionnaire. The participants were seated in front of the
computer monitor and the eye tracking system calibration
was performed.

The experiment was started and twelve tasks were given
to the participants. Each task required a participant to
identify and name an algorithm correctly. Two oral
questions were asked. The questions were about what the
algorithm was doing and how the participants found out
about it. The correctness of the answers was determined by
(a) the participant naming the algorithm correctly or (b) the
participant describing an algorithm in adequate detail. For

example, answers by a participant not able to name the
factorial algorithm, however describing it as "1*2*3*…*n"
were counted as correct. Answers describing an algorithm
line by line rather than by its purpose were counted as
incorrect. After all the tasks were completed, participants
were handed out the post-questionnaire.

3.4. Results
Post-questionnaire evaluation showed participants satisfied
with the experiments overall. Fourteen out of fifteen
participants responded they would be willing to sign up for
the same study again. No complaints were recorded from
participants.

For the twelve algorithms shown to the participants, a
total of fifteen hours of data was collected during the
experimental sessions. A repeated measure analysis shows a
significant difference for correctness of answers between
the six recursive and the six non-recursive algorithms,
F(1, 5) = 2.56, p = .036. A significant effect is observed as
well for subjects encountering the recursive algorithm first
or vice-versa the non-recursive algorithm first, F(1, 5) =
2.77, p = .025. Participants exhibited learning as they
performed better when they saw an algorithm the second
time. No statistical differences were observed on the time
spent by the participants to comprehend the various
algorithms.

A separate analysis for each of the algorithms comparing
participants who got the answers wrong with participants
who got the answers right, shows no difference on what
people look at or deem important for understanding. The
exception is the non-recursive binary search algorithm.
Subjects who got the answer right, focused more on line
"int k= (a+b) / 2", F(1, 11) = 5.36, p = .041. The same
however isn't true for the recursive counterpart,
F(1, 11) = 0.84, p = .38. For most algorithms, the ratio of
correct answers to wrong answers was fairly different.
Distribution of correct and wrong answers was uneven. In
regard to the non-recursive binary search algorithm, the
distribution was six people correct and seven people wrong.
For other algorithms, the unbalanced distribution prevented
making any comparisons.

Tests of within subjects effects show that participants
behaved as individuals. Analysis of time spent,
F(1, 5) = 10.0, p < .001, and correct answers recorded,
F(1, 5) = 3.61, p < .001, are highly significant. Also, eye
movement speeds, F(1, 5) = .49, p = .069, suggest inherent
differences between the way participants view programs.

Interesting findings can be reported from evaluating
means. One sample t-test returned highly significant results
for participants focusing on the many lines of code, t > 5,
df = 12, p < 0.01. Some lines appear to draw higher interest
(fixation duration average, longest fixation) from
participants than others. Comparing recursive algorithms
with their non-recursive counterparts showed similar traits
in interests for similar code fragments. The average longest
fixation duration for "int k = (a+b) / 2" is 1062ms for the
recursive binary search, 1039ms for the non-recursive
version. Neither correlation, nor ANOVA confirmed or
disproved the findings.

 5

Correlation of subjects on what line numbers they looked
at the most and als o said they deemed important for
understanding returned no significant results. Some
participants knew which line number they looked at the
most and were also able to name them. However, even
though some of the participants knew what they were doing,
a paired samples t-test didn't yield any conclusive results.
Knowing where you look and knowing what an algorithm
does showed no relation at all, t = -1.84, df = 12, p = .091.
Asking people what they deem important appears not to be
a reliable way of determining Beacons or important lines in
code.

Comparing correctness of answers versus programming
interest exhibits an increase in correct answers for
participants with higher interest in programming. A linear
regression analysis returned no significant difference,
R2 = .13, F(1, 13) = 1.97, p = .18. Further studies are
needed to verify these results. No correlations were
observed between number of years programming,
correctness of answers and programming interest. No
relations were established for pupil size and eye blinks.
Pupil size and eye blinks appear to be very individualistic
and different for each of the participants.

Overall Correctness
Table 3.1 depicts the correctness of answers recorded for
the algorithms in the study. Comprehension for factorial
and sum algorithms is very high. On the other hand, GCD
and Fibonacci were hard to understand.

Algorithms Recursive Non-
Recursive Both

Factorial 100% 79% 90%

Sum 79% 87% 83%

Binary Search 66% 45% 55%

Exponent 52% 66% 59%

GCD 7% 7% 7%

Fibonacci 6% 0% 3%

Total 52% 47% 49%

Table 3.1 - Correct Answers for Algorithms

Correct vs. Wrong
Comparing participants with correct answers to participants
with wrong answers returned no significant results for most
algorithms. Differences were observed only for the non-
recursive binary search algorithm. For all the algorithms,
with the exception stated above, participants, correct or
incorrect, focused on the same lines of code or named the
same areas as important.

No relation was established between lines of code
participants looked at and line numbers they said were
important for understanding. What participants looked at
didn't correlate with what participants said. Subjects didn't

spend more time on line numbers that they said were
important. Neither did they spend less time.

Considering the binary search algorithm, participants
who identified the algorithm correctly focused more on line
numbers four and five (+). Subjects, who got it wrong,
mentioned line numbers six and seven more frequently (-).
They were also fixating more on line number one (-). See
Figure 3.2.

 1- public int do(int list[], int value) {
 2 int a = 0;
 3 int b = list.length - 1;
 4+ while (a != b) {
 5+ int k = (a + b) / 2;
 6- if (value > list[k]) {
 7- a = k + 1;
 8 }
 9 else {
 10 b = k;
 11 }
 12 }
 13 return a;
 14 }

Figure 3.2 - Non-Recursive Binary Search Algorithm

The differences are significant for line number five,
F(1, 11) = 5.36, p = 0.041. The same doesn't hold true for
the recursive binary search algorithm, F(1, 11) = 0.84,
p = .38. It appears for the non-recursive version,
"int k=(a+b)/2" is a Beacon for program comprehension.
More tests are needed to verify or dismiss these results.

Preliminary data indicates people better at programming
focus more on recursions and loops, people less skilled
more on conditional statements and line number one. None
of these results were statistically significant.

Lines of Interest
Interesting findings can be reported from evaluating means.
One sample t-test returned highly significant results for
participants focusing on the many lines of code, t > 5,
df = 12, p < 0.01. Some lines appear to draw higher
interest (fixation duration average, longest fixation) from
participants than others.

Fixation duration average refers to the portion of fixation
time to total time per algorithm spent on a particular line of
code. Longest fixation refers to the longest fixation duration
that occurred on a particular line of code. Values were
averaged for all participants , correct and incorrect. It
appears participants used the same lines of code for
comprehension.

The longest fixation duration appears also to be related
for similar statements. Considering the binary search
algorithm, the average longest fixation duration for
"int k=(a+b)/2" is 1062ms for the non-recursive binary
search, 1039ms for the recursive version.
"if (value > list[k])" exhibits a 1191ms longest fixation in
the non-recursive version, 1017ms in the recursive
counterpart.

 6

Considering the exponent algorithm, "k = k * a" exhibits
a 829ms longest fixation (non-recursive), "a * do(a, b - 1)"
exhibits 842ms (recursive). Both statements are related,
however modified to fit into the recursive and non-recursive
version of the algorithm. The same was found for the
factorial algorithm with 947ms and 894ms. The sum
algorithm exhibits 786ms and 712ms.

Similar statements seem to take similar time for
comprehension. Similar traits were observed for GCD and
Fibonacci. ANOVA didn't return any significant results
regarding similar statements. However, similar statements
didn't differ more than 200ms for the longest fixation
duration.

The fixation duration average and longest fixation for the
first line of code were found to be almost always larger for
the recursive algorithms. Although that seems interesting,
the complexity of the first line of code for the recursive
algorithms was higher than for their non-recursive
counterpart.

3.5. Discussion
Using the EventStream software framework as the
instrument for the program comprehension study, each line
of code was analyzed based on its longest fixation average.
Some lines were found to have much higher fixation
duration than others.

The sum, factorial and exponent algorithms didn't have
any longest fixation average above 1000ms. This can be
explained by the simplicity of these algorithms. Code
statements were of rather elementary nature. For the other
algorithms, statements in Table 3.2 were found to be over
1000ms.

 Recursive Non-Recursive

Binary
Search

int k = (a + b)/2;
? 1062ms
if (list[k]<value) {
? 1191ms

int k = (a + b)/2;
? 1039ms
if (value>list[k]) {
? 1117ms

GCD
return do(b%a,a);
? 1371ms

int k = a;
? 1209ms
a = b % a;
? 1216ms

Fibonacci
return do(n-1,b,a+b);
? 916ms

b = a + b;
? 1062ms
a = b - a;
? 1191ms

Table 3.2 - Lines of Code with a Longest Fixation
Duration greater than 1000ms

It appears lines crucial to the comprehension process have a
higher longest fixation average. "int k = a" and "a = b % a"
are rather simple statements by themselves, but are
important for the comprehension process and draw higher
interest from programmers than other lines. Statistical
analysis didn't yield any significant results regarding
Beacons, but it can be hypothesized that these lines of code
are crucial to comprehension and could thus be considered
as important during program comprehension.

For reading, fixations are typically 200-250 milliseconds
in length. Fixation on an object depends on the time to

inspect the object and the time to comprehend it
[29][68][90][91][92]. For fixations far above 200-250, this
time difference can be assumed to be used for information
processing. For fixations 1000 milliseconds or above, at
least 750-800ms are used for information processing. This
number indicates that at least part of code reading can be
categorized as problem solving rather than searching.
However, not all fixations are long. Program
comprehension appears to be a combination of searching
and problem solving.

4. Contributions and Future Directions
So far, very little effort has been made to assess people's
eye movements during code reading. Eye movements show
where programmers focus their attention. Eye movements
can be used to evaluate areas of interest for programmers
that help their comprehension process. This knowledge in
turn can be used to help software developers in the
following ways:
• Create programming languages that better satisfy their

needs:
- Identify areas that are hard to comprehend and revise

them.
• Create development environments that increase

programmer's efficiency and quality of code:
- Code/Beacon Highlighting

• Define better teaching methods:
- What do experts look at compared to novices?
- What to look at during debugging / error search.

• Integrate eye-tracking into the code reading process:
- Does a programmer focus on the correct area in code?

A comparison of people with correct comprehension versus
people with wrong comprehension didn't yield any
conclusive results regarding their scanning behaviors. The
only exception was the non-recursive binary search
algorithm. Subjects who got the answer right, focused more
on line "int k=(a+b)/2". This result corresponds to previous
research [19]. There are code fragments that set apart less
and more experienced programmers.

Evaluating fixation mean times shows some lines of code
draw higher interests from programmers than others. It is
hypothesized that the longest fixation average, as identified
by the EventStream software framework, indicates Beacons
in code. The longest fixation average is similar for related
statements. Results are highly significant regarding the
fixation time. Combining these two results we come up
with two types of code fragments that help during
comprehension:

1) Lines which are used by experts during the
comprehension process: int k=(a+b)/2

2) Lines which are used by both experts and novices
equally during the comprehension process

Statement 1) appears to follow Brooks' description of
Beacons: Beacons provide the link between the process of
verifying hypotheses and the actual source code [11].
Expert developers rely on abstract problem descriptions to
understand code. Experts use a semantical approach in the
comprehension process [2][24][34][36][69][75]. Thus, it

 7

can be assumed that experts use hypotheses and follow
Brooks' description of Beacons. This explains Statement 1):
experts focus more on certain lines than novices.

Statement 2) appears to follow Wiedenbeck's description:
Beacons are sets of key features that typically indicate the
presence of a particular data structure or operation in source
code [87]. Both experts and novices focus on certain lines
equally, which would explain Statement 2).

Therefore, the author of this document suggests adding
the following code fragments to the list of Beacons, which
follow the theorems by both Brooks and Wiedenbeck:
• Statement 1): "int k=(a+b)/2"
• Statement 2): Content of Table 3.2
• Statement 2): Code Fragments with an average longest

 fixation of 1000ms or higher

References
[1] Adaptive Multimodal Interaction Laboratory (AMI),

Information and Computer Sciences Department,
University of Hawaii at Manoa.
http://ami.ics.hawaii.edu

[2] Adelson, Beth. (1983). Structure and Strategy in the
Semantically-Rich Domains. Ph.D. Thesis 1983,
Harvard University.

[3] Applied Science Laboratories, Technology and
Systems for Eye Tracking.
http://www.a-s-l.com

[4] Aschwanden, C., Stelovsky, J. (2003). Measuring
Cognitive Load with EventStream Software
Framework. HICSS Conference, IEEE, 2003.

[5] Badre, A. (1982). Designing Chunks for Sequentially
Displayed Information. In Badre, A. and Shneiderman,
B. (eds.), Directions in Human Computer Interaction,
Ablex Publishing, 179-193.

[6] Basili, V. R., Mills, H. D. (1982). Understanding and
Documenting Programs. IEEE Trans. Software Eng.
SE-8, 3 (May 1982), 270-283.

[7] Baecker, R. (1988). Enhancing program readability and
comprehensibility with tools for program visualization.
Proceedings of the 10th international conference on
Software engineering , Singapore, Pages: 356 - 366.

[8] Bednarik, R., Myller, N., Sutinen, E., Tukiainen, M.
(2005). Effects of Experience on Gaze Behavior during
Program Animation. In P. Romero, J. Good, E. Acosta
Chaparro & S. Bryant (Eds). Proc. PPIG 17, Pages 49-
61.

[9] Bergin, S., Reilly, R. (2005). Programming: factors that
influence success. Technical Symposium on Computer
Science Education, Proceedings of the 36th SIGCSE
technical symposium on Computer science education,
St. Louis, Missouri, Pages: 411 - 415.

[10] Bertholf, C. F., Scholtz, J. (1993). Program
Comprehension of Literate Programs by Novice
Programmers. In Empirical Studies of Programmers :
Fifth Workshop. Norwood, NJ: Ablex Publishing. p.
222.

[11] Brooks, Ruven. (1983). Towards a Theory of the
Comprehension of Computer Programs. International
Journal of Man-Machine Studies, 18, 543-554.

[12] Brooks, Ruven. (1978). Using a Behavioral Theory of
Program Comprehension in Software Engineering.
Proceedings of the 3rd international conference on
Software engineering , 196-201.

[13] Canas, J. J., Antoli, A., and Quesada, J. F. (2001). The
role of working memory on measuring mental models
of physical systems. International Journal of
Methodology and Experimental Psychology, Vol. 22.

[14] Cant, S. N., Jeffery, D. R., Henderson-Sellers, B.
(1995). A Conceptual Model of Cognitive Complexity
of Elements of the Programming Process. Information
and Software Technology, 37(7), 351-362.

[15] Chrysler E. (1978). Some basic determinants of
computer programming productivity. Communications
of the ACM, Volume 21, Issue 6 (June 1978), Pages:
472 - 483, ISSN:0001-0782.

[16] Clayton, Richard, Rugaber, Spencer, Wills, Linda.
(1998). On the Knowledge Required to Understand a
Program. Working Conference on Reverse Engineering.

[17] Clements, Paul, Krut, Robert, Morris, Ed, Wallnau,
Kurt. (1996). The Gadfly: An Approach to
Architectural-Level System Comprehension. 4th IEEE
Workshop on Program Comprehension.

[18] Coventry, Lynne. (1989). Some Effects of Cognitive
Style on Learning UNIX. International Journal of
Man-Machine Studies, 31, 349-365.

[19] Crosby, Martha E., Scholtz, Jean, Wiedenbeck, Susan.
(2002). The Roles Beacons Play in Comprehension for
Novice and Expert Programmers. Proceedings of the
14th Annual Workshop of the Psychology of
Programming Interest Group, London, UK. June 18-21,
pp. 58-73.

[20] Crosby, M., Auernheimer, B., Aschwanden, C., Ikehara,
C. (2001). Physiological Data Feedback for
Application in Distance Education. PUI Conference,
September 2001.

[21] Crosby, Martha E., Stelovsky, Jan. (1989). The
Influence of User Experience and Presentation Medium
on Strategies of Viewing Algorithms, IEEE.

[22] Crosby, Martha E., Stelovsky, J. (1989) Subject
Differences in the Reading of Computer Algorithms. In
Designing and Using Human-Computer Interfaces and
Knowledge Based Systems, G. Salvendy and M. Smith
Eds., Elsevier Science, Amsterdam 137-144.

[23] Curtis, B. (1984). Fifteen years of psychology in
software engineering: Individual differences and
cognitive science. Proceedings of the 7th international
conference on Software engineering, Orlando, Florida,
United States, Pages: 97 - 106.

[24] Davies, Simon P. (1990). The Nature and Development
of Programming Plans. International Journal of Man-
Machine Studies, 32, 461-481.

[25] Davies, Simon P. (1993). Models and Theories of
Programming Strategy. International Journal of Man-
Machine Studies, 39, 237-267.

 8

[26] Davis, J. S. (1984). Chunks: A Basis for Complexity
Measurement. Information Processing and
Management, 20(1), 119-127.

[27] Evans, G. E., Simkin, M. K. (1989). What best predicts
computer proficiency? Communications of the ACM,
Volume 32, Issue 11, Pages: 1322 - 1327.

[28] EventStream Software Framework on the Web:
http://www.dataexplorer.net

[29] Eyetrack III: Consumer Behavior in the Age of
Multimedia (Eye Tracking)
http://www.poynterextra.org/eyetrack2004/

[30] Fix, Vikki, Wiedenbeck, Susan, Scholtz, Jean. (1993).
Mental Representations of Programs by Novices and
Experts. Conference Proceedings on INTERCHI'93,
74-79.

[31] Furnas, G. W. Generalized Fisheye Views. Human
Factors in Computing Systems CHI ‘86 Conference
Proceedings, 16-23.

[32] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994).
Design Patterns. Addison-Wesley, ISBN 0-201-63361-2.

[33] Gellenbeck, Edward M., Cook, Curtis R. (1991). An
Investigation of Procedure and Variable Names as
Beacons during Program Comprehension . Tech Report
No. 91-60-2, Corvallis: Oregon State University,
Computer Science Department.

[34] Gilmore, D. J., Green, T. R. G. (1988). Programming
Plans and Programming Expertise. The Quarterly
Journal of Experimental Psychology, 40A(3), 423-442.

[35] Green, T. R. G. (1997). Cognitive approaches to
software comprehension: results, gaps and limitations.
Extended abstract of talk at workshop on Experimental
Psychology in Software Comprehension Studies 97,
University of Limerick, Ireland.

[36] Green, T. R. G., Navarro, R. (1995). Programming
Plans, Imagery, and Visual Programming. In Nordby,
K., Helmersen, P. H., Gilmore, D. J., Arnesen, S. (Eds.)
INTERACT-95. London: Chapman and Hall (pp. 139-
144).

[37] Hendrix, T. Dean, Cross, James H. II, Maghsoodloo,
Saeed. (2002). The Effectiveness of Control Structure
Diagrams in Source Code Comprehension Activities.
IEEE Transactions on Software Engineering, Vol. 28/5,
pp. 463-477.

[38] Hoc, Jean-Michel. (1983). Analysis of Beginners'
Problem-Solving Strategies in Programming.
Psychology of Computer Use, ISBN 0-12-297420-4.

[39] Holt, Ric. (2002). Software Architecture as a Shared
Mental Model. Proceedings of 2002.

[40] Hornof, A. J., Halverson, T. (2003). Cognitive
strategies and eye movements for searching
hierarchical computer displays. CHI '03: Proceedings
of the SIGCHI conference on Human factors in
computing systems, ISBN 1-58113-630-7, 249-256.

[41] Howard, Richard A., Carver, Curtis A., Lane, William
D. (1996). Felder's Learning Styles, Bloom's
Taxonomy, and the Kolb Learning Cycle: Tying it all
together in the CS2 Course. SIGCSE Bulletin, vol. 28,
no. 1, March 1996, pp. 227-231.

[42] Jacob, J. J. K., & Karn, K. S. (2003). Eye Tracking in
Human-Computer Interaction and Usability Research:
Ready to Deliver the Promises. In J. Hyona, R. Radach,
& H. Deubel (Eds.), The Mind’s Eyes: Cognitive and
Applied Aspects of Eye Movements (pp. 573-605).
Oxford: Elsevier Science.

[43] Kahnei, J. H. (1983). Problem Solving by Novice
Programmers. In T. R. G. Green, S. J. Payne and G. C.
van der Veer (Eds.), The Psychology of Computer Use,
London: Academic Press.

[44] Karn, K. S., Ellis, S., and Juliano, C. (1999). The hunt
for usability: tracking eye movements. In CHI '99
Extended Abstracts on Human Factors in Computing
Systems (Pittsburgh, Pennsylvania, May 15 - 20, 1999).
CHI '99. ACM Press, New York, NY, 173-173. DOI=
http://doi.acm.org/10.1145/632716.632823

[45] Khazaei, B., Jackson, M. (2002). Is there any
Difference in Novice Comprehension of a Small
Program Written in the Event-Driven and Object-
Oriented Styles? Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages
and Environments (HCC'02) , 0-7695-1644-0/02.

[46] King, L. (2002). The Relationship between Scene and
Eye Movements. Proceedings of the 35th Hawaii
International Conference on System Sciences, 2002.

[47] Kintsch, W. (1977). Memory and Cognition. John
Wiley.

[48] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M.,
Jones, P. W., Hoaglin, D. C., El-Emam, K., Rosenberg,
J. (2001). Preliminary Guidelines for Empirical
Research in Software Engineering. IEEE Transactions
on Software Engineering , 28(8), 721-734

[49] Klemola, T. (2000). A cognitive model for complexity
metrics. 4th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering, Sophia Antipolis and Cannes, France,
June 12-16, 2000.

[50] Knuth, D. (1984). Literate Programming. The
Computer Journal, 27(2), 97-112.

[51] Ko, Andrew Jensen, Uttl, Bob. (2003). Individual
Differences in Program Comprehension Strategies in
Unfamiliar Programming Systems. 11th IEEE
International Workshop on Program Comprehension
(IWPC'03).

[52] Koenemann, Jürgen, Robertson, Scott P. (1991). Expert
Problem Solving Strategies for Program
Comprehension. In Proceedings of ACM CHI'91
Conference on Human Factors in Computing Systems,
New Orleans, LA, April 27-May 2.

[53] Letovsky, S., Soloway, E. (1986). Delocalized Plans
and Program Comprehension. IEEE Software, pages
41-49, May 1986.

[54] Littman, D. C., Pinto, Je., Letovsky, S., Soloway, E.
(1986). Mental Models and Software Maintenance. In
Empirical Studies of Programmers : Papers Presented at
the First Workshop on Empirical Studies of
Programmers, June 5-6, 1986, Washington, D.C., E.
Soloway and S Iyengar, eds. Norwood, N.J.: Ablex,

 9

1986, 80-98. Reprinted in J. Syst. and Software 7, 4
(Dec. 1987), 341-355.

[55] Logie, R. H., Marchetti, C. (1991). Visuo-Spatial
Working Memory: Visual, Spatial or Central Executive?
In R. H. Logie and M. Denis, Eds. Mental Images in
Human Cognition, pp. 105-115. Amsterdam: Elsevier.

[56] Miara, J. R., J. A. Musselman, J. A. Navarro, and B.
Shneiderman. Program Indentation and
Comprehensibility. Comm. ACM 26, 11 (Nov. 1983),
861-867.

[57] Miller, G. A. (1956). The Magical Number Seven, Plus
or Minus Two: Some Limits of our Capacity for
Processing Information. Psychological Review, 63, 81-
97.

[58] Navarro-Prieto, Raquel. (1999). Mental Representation
and Imagery in Program Comprehension. Psychology
of Programming Interest Group, 11th Annual
Workshop.

[59] Pennington, N. (1987). Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychology , 19, 295-341.

[60] Perry, Dewayne E., Porter, Adam A., Votta, Lawrence
G. (2000). Empirical Studies of Software Engineering:
A Roadmap. ICSE - Future of SE Track , 345-355.

[61] Petre, Marian, Blackwell, Alan F. (1999). Mental
Imagery in Program Design and Visual Programming.
International Journal of Human-Computer Studies, 51,
7-30.

[62] Pirolli, P., Card, S. K., Van Der Wege, M. M. (2001).
Visual Information Foraging in a Focus + Context
Visualization. ACM Conference on Human Factors in
Computing Systems, CHI Letters, Vol. 3.1, 506-513.

[63] Pirolli, Peter, Card, Stuart K. (1999). Information
Foraging. Psychological Review, 106, 643-675.

[64] Pirolli, Peter, Pitkow, James, Rao, Ramana. (1996).
Silk from a Sow's Ear: Extracting Usable Structures
from the Web. Proc. ACM Conf. Human Factors in
Computing Systems, CHI.

[65] Rajlich, V., Doran, J., Gudla, R. T. S. (1994). Layered
Explanations of Software: A Methodology for Program
Comprehension. 3rd IEEE Workshop on Program
Comprehension , Nov. 1415, 1994, Washington, D.C.

[66] Rajlich, V., Wilde, N. (2002). The Role of Concepts in
Program Comprehension. IWPC 2002, 271-278.

[67] Ramalingam, Vennila, Wiedenbeck, Susan. (1997). An
Empirical Study of Novice Program Comprehension in
the Imperative and Object-Oriented Styles. 7th
Workshop on Empirical Studies of Programmers .

[68] Reichle, E. D., Rayner, K., Pollatsek, A. (2003). The E-
Z Reader Model of Eye-Movement Control in Reading:
Comparisons to Other Models. Behavior and Brain
Sciences (2003) 26, 445-526.

[69] Rist, R. S. (1986). Plans in Programming: Definition,
Demonstration and Development. In E. Soloway and S.
Iyengar (Eds.), Empirical Studies of Programmers .
Norwood, NJ: Ablex.

[70] Romero, P., Cox, R., du Boulay, B., and Lutz, R. (2002)
Visual attention and representation switching during
java program debugging: A study using the restricted

focus viewer. In Diagrams 2002: Second International
Conference on Theory and Application of Diagrams,
number 2317 in Lecture Notes in Artificial Intelligence,
pages 221-235. Springer-Verlag.

[71] Shaft, Teresa M. (1995). Helping Programmers
Understand Computer Programs: The Use of
Metacognition. DATA BASE Advances, 26(4), 25-46.

[72] Shaft, Teresa M., Vessey, Iris. (1995). The Relevance
of Application Domain Knowledge: The Case of
Computer Program Comprehension. Information
Systems Research, 6(3), 286-299.

[73] Shneiderman, B., Mayer, R. (1979). Syntactic
Semantic Interactions in Programmer Behavior: A
Model and Experimental Results . Intl. J. Comp. & Info.
Sciences 8, 3 (June 1979), 219-238.

[74] Smith, E. A., Winterhalder, B. (1992). Evolutionary
Ecology and Human Behavior. De Gruyter, New York.

[75] Soloway, E., Ehrlich, K. (1984). Empirical Studies of
Programming Knowledge. IEEE Transactions on
Software Engineering, SE-10(5), 595-609, Sept. 1984.

[76] Soloway, E., Pinto, J., Letovsky, S., Littman, D.,
Lampert, R. (1988). Designing Documentation to
compensate for Delocalized Plans. Communications of
the ACM, 31(11), 1259-1267, 1988.

[77] Stephens, D. W., Krebs, J. R. (1986). Foraging Theory.
Princeton University Press, Princeton, NJ.

[78] Storey, M.-A.D., Fracchia, F.D., Müller, H.A. (1999).
Cognitive Design Elements to Support the
Construction of a Mental Model during Software
Exploration. Journal of Software Systems, 44:171-185.

[79] Storey, M.-A.D., Wong K., Müller, H.A. (1998). How
Do Program Understanding Tools Affect How
Programmers Understand Programs? Science of
Computer Programming, 36(2), Mar. 2000, pp. 183-
207.

[80] Storey, M.-A. D., Wong, K., Fracchia, F.D., Müller, H.
A. (1997). On Integrating Visualization Techniques for
Effective Software Exploration. Proceedings of IEEE
Symposium on Information Visualization, 38-45.

[81] Tenny, Ted. (1988). Program Readability: Procedures
Versus Comments. IEEE Transactions on Software
Engineering, Vol. 14, No. 9.

[82] Vermeulen, A., Ambler, S. W., Bumgardner, G., Metz,
E., Misfeldt, T., Shur, J., Thompson, P. The Elements
of Java Style. Cambridge University Press, ISBN 0-
521-77768-2.

[83] Vessey, I. (1987). On Matching Programmers' Chunks
with Program Structures: An Empirical Investigation.
International Journal of Man-Machine Studies, 27, 65-
89.

[84] von Mayrhauser, A., Vans, A.M. (1994).
Comprehension Processes During Large Scale
Maintenance. Proceedings of the 16th International
Conference on Software Engineering , Sorrento, Italy,
May 16-21, 1994.

[85] von Mayrhauser, A., Vans, A.M. (1995). Program
Understanding: Models and Experiments. In Advances
in Computers, Volume 40, M. C. Yovits and M. V.

 10

Zelkowitz, Eds. Academic Press Limited, 1995, pp. 1-
38.

[86] von Mayrhauser, A., Vans, A. M (1994). Program
Understanding: A Survey. Technical Report CS-94-120,
Colorado State University, August 1994.

[87] Wiedenbeck, S. (1986). Beacons in Computer Program
Comprehension. International Journal of Man-
Machine Studies, 25, 697-709.

[88] Winner, E., Casey, M. B. (1992). Cognitive Profiles of
Artists. In G. C. Cupchik and J. Laszlo (eds.),
Emerging Visions of the Aesthetic Process: Psychology,
Semiology and Philosophy. Cambridge: Cambridge
University Press.

[89] Woodfield, S. N., Dunsmore, H. E., Shen, V. Y. (1981).
The Effect of Modularization and Comments on
Program Comprehension. Proceedings of the 5th
international conference on Software engineering, 215-
223.

[90] Zelinsky. Gregory J., Murphy, Gregory L. (2000).
Synchronizing visual and language processing: An
effect of object name length on eye movements.
Psychological Science, 11, 125-131.

[91] Zelinsky, G. J., Rao, R. P. N., Hayhoe, M. M., &
Ballard, D. H. (1997). Eye movements reveal the
spatiotemporal dynamics of visual search.
Psychological Science, 8(6), 448-453.

[92] Zelinsky, Gregory J. (1996). Using Eye Saccades to
Assess the Selectivity of Search Movements. Vision
Research, 36(14), 2177-2187.

